Semilattice
Last updated
Last updated
∀(x,y∈A::∃(z∈A::JoinAR{x,y}z))
pred AllJoins(A: set univ, R: univ -> univ) {
all x,y: A | some z: A | Join[A,R,x+y,z]
}
∀(x,y∈A::∃(z::MeetAR{x,y}z))
pred AllMeets(A: set univ, R: univ->univ) {
all x,y: A | some z: A | Meet[A,R,x+y,z]
}
PartialOrderAR
AllJoinsAR
pred JoinSemilattice(A: set univ, R: univ -> univ) {
PartialOrder[A,R]
AllJoins[A,R]
}
JoinSemilatticeAR
MeetSemilatticeAR
pred Lattice(A: set univ, R: univ->univ) {
JoinSemilattice[A,R]
MeetSemilattice[A,R]
}
PartialOrderAR
AllMeetsAR
pred MeetSemilattice(A: set univ, R: univ -> univ) {
PartialOrder[A,R]
AllMeets[A,R]
}
MagmaA⊗
MagmaA⊕
∀(x,y∈A::x⊗(x⊕y)=x)
SemilatticeA⊗
SemilatticeA⊕
AbsorbsA⊗⊕
AbsorbsA⊕⊗
IdempotentA⊗
SymmetricA⊗
SemigroupA⊗