Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Order Theoretic Definition
  • Algebraic Definition
  1. Definitions

Semilattice

Order Theoretic Definition

AllJoins  A  R\textbf{AllJoins} \; A \; RAllJoinsAR

∀(x,y∈A::∃(z∈A::Join  A  R  {x,y}  z))\forall(x,y \in A :: \exists(z \in A:: \textbf{Join} \; A \; R \; \{x, y\} \; z))∀(x,y∈A::∃(z∈A::JoinAR{x,y}z))


pred AllJoins(A: set univ, R: univ -> univ) {
  all x,y: A | some z: A | Join[A,R,x+y,z]
}
AllMeets  A  R\textbf{AllMeets} \; A \; RAllMeetsAR

∀(x,y∈A::∃(z::Meet  A  R  {x,y}  z))\forall(x,y \in A :: \exists(z :: \textbf{Meet} \; A \; R \; \{x,y\} \; z))∀(x,y∈A::∃(z::MeetAR{x,y}z))


pred AllMeets(A: set univ, R: univ->univ) {
  all x,y: A | some z: A | Meet[A,R,x+y,z]
}
JoinSemilattice  A  R\textbf{JoinSemilattice} \; A \; RJoinSemilatticeAR

PartialOrder  A  R\textbf{PartialOrder} \; A \; RPartialOrderAR

AllJoins  A  R\textbf{AllJoins} \; A \; RAllJoinsAR


pred JoinSemilattice(A: set univ, R: univ -> univ) {
  PartialOrder[A,R]
  AllJoins[A,R]
}
Lattice  A  R\textbf{Lattice} \; A \; RLatticeAR

JoinSemilattice  A  R\textbf{JoinSemilattice} \; A \; RJoinSemilatticeAR

MeetSemilattice  A  R\textbf{MeetSemilattice} \; A \; RMeetSemilatticeAR


pred Lattice(A: set univ, R: univ->univ) {
  JoinSemilattice[A,R]
  MeetSemilattice[A,R]
}
MeetSemilattice  A  R\textbf{MeetSemilattice} \; A \; RMeetSemilatticeAR

PartialOrder  A  R\textbf{PartialOrder} \; A \; RPartialOrderAR

AllMeets  A  R\textbf{AllMeets} \; A \; RAllMeetsAR


pred MeetSemilattice(A: set univ, R: univ -> univ) {
  PartialOrder[A,R]
  AllMeets[A,R]
}

Algebraic Definition

Absorbs  A  ⊗  ⊕\textbf{Absorbs} \; A \; \otimes \; \oplus AbsorbsA⊗⊕

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

Magma  A  ⊕\textbf{Magma} \; A \; \oplusMagmaA⊕

∀(x,y∈A::x⊗(x⊕y)=x)\forall( x,y \in A :: x \otimes (x \oplus y) = x)∀(x,y∈A::x⊗(x⊕y)=x)


pred Absorbs(A: set univ, f,g: univ->univ->univ) {
  Magma[A,f]
  Magma[A,g]
  all: x,y: A | f[x,g[x,y]] = x
}
Lattice  A  ⊗  ⊕\textbf{Lattice} \; A \; \otimes \; \oplusLatticeA⊗⊕

Semilattice  A  ⊗\textbf{Semilattice} \; A \; \otimesSemilatticeA⊗

Semilattice  A  ⊕\textbf{Semilattice} \; A \; \oplusSemilatticeA⊕

Absorbs  A  ⊗  ⊕\textbf{Absorbs} \; A \; \otimes \; \oplusAbsorbsA⊗⊕

Absorbs  A  ⊕  ⊗\textbf{Absorbs} \; A \; \oplus \; \otimesAbsorbsA⊕⊗


pred Lattice(A: set univ, cap, cup: univ->univ->univ) {
  Semilattice[A,cap]
  Semilattice[A,cup]
  Absorbs[A,cap,cup]
  Absorbs[A,cup,cap]
}
Semilattice  A  ⊗\textbf{Semilattice} \; A \; \otimes SemilatticeA⊗

Idempotent  A  ⊗\textbf{Idempotent} \; A \; \otimesIdempotentA⊗

Symmetric  A  ⊗\textbf{Symmetric} \; A \; \otimesSymmetricA⊗

Semigroup  A  ⊗\textbf{Semigroup} \; A \; \otimesSemigroupA⊗


pred Semilattice(A: set univ, op: univ->univ->univ) {
  Idempotent[A,op]
  Symmetric[A,op]
  Semigroup[A,op]
}
PreviousRow Constant RelationsNextSet Inclusion

Last updated 1 year ago

🧰