Semilattice
Order Theoretic Definition
AllJoinsAR
β(x,yβA::β(zβA::JoinAR{x,y}z))
pred AllJoins(A: set univ, R: univ -> univ) {
all x,y: A | some z: A | Join[A,R,x+y,z]
}AllMeetsAR
β(x,yβA::β(z::MeetAR{x,y}z))
pred AllMeets(A: set univ, R: univ->univ) {
all x,y: A | some z: A | Meet[A,R,x+y,z]
}JoinSemilatticeAR
PartialOrderAR
AllJoinsAR
pred JoinSemilattice(A: set univ, R: univ -> univ) {
PartialOrder[A,R]
AllJoins[A,R]
}LatticeAR
JoinSemilatticeAR
MeetSemilatticeAR
pred Lattice(A: set univ, R: univ->univ) {
JoinSemilattice[A,R]
MeetSemilattice[A,R]
}MeetSemilatticeAR
PartialOrderAR
AllMeetsAR
pred MeetSemilattice(A: set univ, R: univ -> univ) {
PartialOrder[A,R]
AllMeets[A,R]
}Algebraic Definition
Last updated