Semilattice
Order Theoretic Definition
AllJoinsAR
ā(x,yāA::ā(zāA::JoinAR{x,y}z))
pred AllJoins(A: set univ, R: univ -> univ) {
all x,y: A | some z: A | Join[A,R,x+y,z]
}
AllMeetsAR
ā(x,yāA::ā(z::MeetAR{x,y}z))
pred AllMeets(A: set univ, R: univ->univ) {
all x,y: A | some z: A | Meet[A,R,x+y,z]
}
JoinSemilatticeAR
PartialOrderAR
AllJoinsAR
pred JoinSemilattice(A: set univ, R: univ -> univ) {
PartialOrder[A,R]
AllJoins[A,R]
}
LatticeAR
JoinSemilatticeAR
MeetSemilatticeAR
pred Lattice(A: set univ, R: univ->univ) {
JoinSemilattice[A,R]
MeetSemilattice[A,R]
}
MeetSemilatticeAR
PartialOrderAR
AllMeetsAR
pred MeetSemilattice(A: set univ, R: univ -> univ) {
PartialOrder[A,R]
AllMeets[A,R]
}
Algebraic Definition
AbsorbsAāā
MagmaAā
MagmaAā
ā(x,yāA::xā(xāy)=x)
pred Absorbs(A: set univ, f,g: univ->univ->univ) {
Magma[A,f]
Magma[A,g]
all: x,y: A | f[x,g[x,y]] = x
}
Last updated