Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions

Monoidal Preorder

MonoidalPreorderā€…ā€ŠXā€…ā€ŠRā€…ā€ŠāŠ—ā€…ā€ŠI\textbf{MonoidalPreorder} \; X \; R \; \otimes \; IMonoidalPreorderXRāŠ—I

Preorderā€…ā€ŠXā€…ā€ŠR\textbf{Preorder} \; X \; RPreorderXR

Monoidā€…ā€ŠXā€…ā€ŠāŠ—ā€…ā€ŠI\textbf{Monoid} \; X \; \otimes \; IMonoidXāŠ—I

āˆ€(x1,x2,y1,y2∈X:x1≤x2∧y1≤y2:x1āŠ—x2≤y1āŠ—y2)\forall (x_1, x_2, y_1, y_2 \in X : x_1 \leq x_2 \wedge y_1 \leq y_2 : x_1 \otimes x_2 \leq y_1 \otimes y_2)āˆ€(x1​,x2​,y1​,y2ā€‹āˆˆX:x1​≤x2ā€‹āˆ§y1​≤y2​:x1ā€‹āŠ—x2​≤y1ā€‹āŠ—y2​)


pred MonoidalPreorder(X: set univ, R: univ->univ, op: univ->univ->univ, I: univ) {
  Preorder[X,R]
  Monoid[X,op,I]
  all x1,x2,y1,y2 | x1->x2 in R and y1->y2 in R implies op[x1,x2] -> op[y1,y2] in R
}
PreviousIndexed Union and IntersectionNextMonotone Map

Last updated 1 year ago

🧰