Preorder X R\textbf{Preorder} \; X \; RPreorderXR
Monoid X ⊗ I\textbf{Monoid} \; X \; \otimes \; IMonoidX⊗I
∀(x1,x2,y1,y2∈X:x1≤x2∧y1≤y2:x1⊗x2≤y1⊗y2)\forall (x_1, x_2, y_1, y_2 \in X : x_1 \leq x_2 \wedge y_1 \leq y_2 : x_1 \otimes x_2 \leq y_1 \otimes y_2)∀(x1,x2,y1,y2∈X:x1≤x2∧y1≤y2:x1⊗x2≤y1⊗y2)
pred MonoidalPreorder(X: set univ, R: univ->univ, op: univ->univ->univ, I: univ) { Preorder[X,R] Monoid[X,op,I] all x1,x2,y1,y2 | x1->x2 in R and y1->y2 in R implies op[x1,x2] -> op[y1,y2] in R }
Last updated 1 year ago