Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Direct Image
  • Images according to De Baets and Kerre
  • Images according to Bandler and Kohout
  1. Definitions

Images of a set under a relation

Direct Image

R(A):={  y∈B:∃(x∈A::(x,y)∈R)  }R(A) := \{\; y \in B : \exists(x \in A :: (x,y) \in R) \; \}R(A):={y∈B:∃(x∈A::(x,y)∈R)}

Relation  X  Y  R\textbf{Relation} \; X \; Y \; RRelationXYR

Includes  A  X\textbf{Includes} \; A \; XIncludesAX


Alloy provides syntax for the direct image. R(A)R(A)R(A) is written in Alloy as A.R

Images according to De Baets and Kerre

Typing

All images have the same basic type requirements, the details of which I will place in a predicate called BKType\textbf{BKType}BKType.

BKType  X  Y  R  A  y\textbf{BKType} \; X \; Y \; R \; A \; yBKTypeXYRAy

Relation  X  Y  R\textbf{Relation} \; X \; Y \; RRelationXYR

A⊆XA \subseteq XA⊆X

y∈Yy \in Yy∈Y


pred BKType(X,Y: set univ, R: univ->univ, A: set univ, y: univ) {
  R in X->Y
  A in X
  y in Y
}

Furthermore, I have chosen to extract the range of each set comprehension to its own (characteristic) predicate.

Sub-direct Image

SubDI  X  Y  R  A:={  y∈Y:∅⊂A⊆Ry  }\textbf{SubDI} \; X \; Y \; R \; A := \{\; y \in Y : \empty \subset A \subseteq Ry \; \}SubDIXYRA:={y∈Y:∅⊂A⊆Ry}

Notation.

  1. SubDI  X  Y  R  A\textbf{SubDI} \; X \; Y \; R \; ASubDIXYRA can be written SubDI  R  A\textbf{SubDI} \; R \; ASubDIRA when XXX and YYY are clear from the context.

  2. SubDI  R  A\textbf{SubDI} \; R \; ASubDIRA is written in symbols as R⊲(A)R^{\vartriangleleft}(A)R⊲(A)


fun SubDI(X,Y: set univ, R: univ->univ, A: set univ) : set univ {
  { y: Y | SubDI[X,Y,R,A,y] }
}

pred SubDI(X,Y: set univ, R: univ->univ, A: set univ, y: univ) {
  BKType[X,Y,R,A,y]

  some A
  A in R.y
}

Super-direct Image

SupDI  X  Y  R  A={  y∈Y:∅⊂Ry⊆A  }\textbf{SupDI} \; X \; Y \; R \; A = \{\; y \in Y : \empty \subset Ry \subseteq A \; \}SupDIXYRA={y∈Y:∅⊂Ry⊆A}

Notation.

  1. SupDI  X  Y  R  A\textbf{SupDI} \; X \; Y \; R \; ASupDIXYRA can be written SupDI  R  A\textbf{SupDI} \; R \; ASupDIRA when XXX and YYY are clear from the context.

  2. SupDI  R  A\textbf{SupDI} \; R \; ASupDIRA is written in symbols as R⊳(A)R^{\vartriangleright}(A)R⊳(A)


fun SupDI(X,Y: set univ, R: univ->univ, A: set univ) : set univ {
  { y: Y | SupDI[X,Y,R,A,y] }
}

pred SupDI(X,Y: set univ, R: univ->univ, A: set univ, y: univ) {
  BKType[X,Y,R,A,y]

  some R.y
  R.y in A
}

Square Image

SqrI  X  Y  R  A={  y∈Y:∅⊂A=Ry  }\textbf{SqrI} \; X \; Y \; R \; A = \{\; y \in Y : \empty \subset A = Ry \; \}SqrIXYRA={y∈Y:∅⊂A=Ry}

Notation.

  1. SqrI  X  Y  R  A\textbf{SqrI} \; X \; Y \; R \; ASqrIXYRA can be written SqrI  R  A\textbf{SqrI} \; R \; ASqrIRA when XXX and YYY are clear from the context.

  2. SqrI  R  A\textbf{SqrI} \; R \; ASqrIRA is written in symbols as R⋄(A)R^{\diamond}(A)R⋄(A)


fun SqrI(X,Y: set univ, R: univ->univ, A: set univ) : set univ {
  { y: Y | SqrI[X,Y,R,A,y] }
}

pred SqrI(X,Y: set univ, R: univ->univ, A: set univ, y: univ) {
  BKType[X,Y,R,A,y]

  some A
  A = R.y
}

Images according to Bandler and Kohout

Sub-direct Image

SubDI  X  Y  R  A:={  y∈Y:A⊆Ry  }\textbf{SubDI} \; X \; Y \; R \; A := \{\; y \in Y : A \subseteq Ry \; \}SubDIXYRA:={y∈Y:A⊆Ry}

Notation.

  1. SubDI  X  Y  R  A\textbf{SubDI} \; X \; Y \; R \; ASubDIXYRA can be written SubDI  R  A\textbf{SubDI} \; R \; ASubDIRA when XXX and YYY are clear from the context.

  2. SubDI  R  A\textbf{SubDI} \; R \; ASubDIRA is written in symbols as R⊲(A)R^{\vartriangleleft}(A)R⊲(A)


fun SubDI(X,Y: set univ, R: X->Y, A: set X) : set univ {
  { y: Y | A in R.y }
}

Super-direct Image

SupDI  X  Y  R  A={  y∈Y:A⊇Ry  }\textbf{SupDI} \; X \; Y \; R \; A = \{\; y \in Y : A \supseteq Ry \; \}SupDIXYRA={y∈Y:A⊇Ry}

Notation.

  1. SupDI  X  Y  R  A\textbf{SupDI} \; X \; Y \; R \; ASupDIXYRA can be written SupDI  R  A\textbf{SupDI} \; R \; ASupDIRA when XXX and YYY are clear from the context.

  2. SupDI  R  A\textbf{SupDI} \; R \; ASupDIRA is written in symbols as R⊳(A)R^{\vartriangleright}(A)R⊳(A)


fun SupDI(X,Y: set univ, R: X->Y, A: set X) : set univ {
  { y: Y | R.y in A }
}

Square Image

SqrI  X  Y  R  A={  y∈Y:A=Ry  }\textbf{SqrI} \; X \; Y \; R \; A = \{\; y \in Y : A = Ry \; \}SqrIXYRA={y∈Y:A=Ry}

Notation.

  1. SqrI  X  Y  R  A\textbf{SqrI} \; X \; Y \; R \; ASqrIXYRA can be written SqrI  R  A\textbf{SqrI} \; R \; ASqrIRA when XXX and YYY are clear from the context.

  2. SqrI  R  A\textbf{SqrI} \; R \; ASqrIRA is written in symbols as R⋄(A)R^{\diamond}(A)R⋄(A)


fun SqrI(X,Y: set univ, R: X->Y, A: set X) : set univ {
  { y: Y | A = R.y }
}
PreviousGalois ConnectionNextIndexed Union and Intersection

Last updated 1 year ago

🧰