Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Meet Preserving
  • Join Preserving
  1. Definitions

Preservation of Extrema

Meet Preserving

MeetPreservingā€…ā€ŠAā€…ā€ŠBā€…ā€ŠRā€…ā€ŠSā€…ā€Šf\textbf{MeetPreserving} \; A \; B \; R \; S \; fMeetPreservingABRSf

MonotoneMapā€…ā€ŠAā€…ā€ŠBā€…ā€ŠRā€…ā€ŠSā€…ā€Šf\textbf{MonotoneMap} \; A \; B \; R \; S \; fMonotoneMapABRSf

āˆ€(x,y∈A::f(āŠ“{x,y})ā€…ā€Šā‰…ā€…ā€ŠāŠ“{f.x,f.y})\forall( x,y \in A :: f(\sqcap \{x,y\}) \; \cong \; \sqcap \{f.x, f.y \})āˆ€(x,y∈A::f(āŠ“{x,y})ā‰…āŠ“{f.x,f.y})


pred MeetPreserving(A,B: set univ, R,S,f: univ->univ) {
  MonotoneMap[A,B,R,S,f]
  all x,y: A {
    Equivalent[
      B,S,
      f[Meet[A,R,x+y]],
      Meet[B,S,f[x]+f[y]]
    ]
  }
}

Join Preserving

JoinPreservingā€…ā€ŠAā€…ā€ŠBā€…ā€ŠRā€…ā€ŠSā€…ā€Šf\textbf{JoinPreserving} \; A \; B \; R \; S \; fJoinPreservingABRSf

MonotoneMapā€…ā€ŠAā€…ā€ŠBā€…ā€ŠRā€…ā€ŠSā€…ā€Šf\textbf{MonotoneMap} \; A \; B \; R \; S \; fMonotoneMapABRSf

āˆ€(x,y∈A::f(āŠ”{x,y})ā€…ā€Šā‰…ā€…ā€ŠāŠ”{f.x,f.y})\forall( x,y \in A :: f(\sqcup \{x,y\}) \; \cong \; \sqcup \{f.x, f.y \})āˆ€(x,y∈A::f(āŠ”{x,y})ā‰…āŠ”{f.x,f.y})


pred JoinPreserving(A,B: set univ, R,S,f: univ->univ) {
  MonotoneMap[A,B,R,S,f]
  all x,y: A {
    Equivalent[
      B,S,
      f[Join[A,R,x+y]],
      Join[B,S,f[x]+f[y]]
    ]
  }
}
PreviousPreorderNextProduct

Last updated 1 year ago

🧰