Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • βœ’οΈNotation
    • πŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • πŸ”¬Checks
    • πŸŽ™οΈA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions

Non-Preservation of Extrema

Generative Effect

HasGenerativeEffectβ€…β€ŠAβ€…β€ŠBβ€…β€ŠRβ€…β€ŠSβ€…β€Šf\textbf{HasGenerativeEffect} \; A \; B \; R \; S \; fHasGenerativeEffectABRSf

MonotoneMapβ€…β€ŠAβ€…β€ŠBβ€…β€ŠRβ€…β€ŠSβ€…β€Šf\textbf{MonotoneMap} \; A \; B \; R \; S \; fMonotoneMapABRSf

βˆƒ(x,y∈A::f(βŠ”{x,y})β€…β€Šβ‰…ΜΈβ€…β€ŠβŠ”{f.x,f.y})\exists( x,y \in A :: f(\sqcup \{x,y\}) \; \not \cong \; \sqcup \{f.x, f.y \})βˆƒ(x,y∈A::f(βŠ”{x,y})ξ€ β‰…βŠ”{f.x,f.y})


pred HasGenerativeEffect(A,B: set univ, R,S,f: univ->univ) {
  MonotoneMap[A,B,R,S,f]
  some x,y: A {
    not Equivalent[
      B,S,
      f[Join[A,R,x+y]],
      Join[B,S,f[x]+f[y]]
    ]
  }
}
PreviousNatural ProjectionNextOver and Under

Last updated 1 year ago

🧰