Magma
Last updated
Last updated
UnitalAfI
∀(x∈A::f(x,x)=I)
pred AutoInverse(A: set univ, f: univ->univ->univ, I: univ) {
Unital[A,f,I]
all x: A | f[x,x] = I
}
MagmaA⊗
∀(a∈A::a⊗a=a)
pred Idempotent(A: set univ, op: univ->univ->univ) {
Magma[A,op]
all a: A | op[a,a] = a
}
LeftInverseAfIyx
RightInverseAfIyx
pred Inverse(A: set univ, f: univ->univ->univ, I,y,x: univ) {
LeftInverse[A,f,I,y,x]
RightInverse[A,f,I,y,x]
}
UnitalAfI
f(L,x)=I
pred LeftInverse(A: set univ, f: univ->univ->univ, I,L,x: univ) {
Unital[A,f,I]
f[L,x] = I
}
MagmaA⊗
I∈A
∀(x∈A::I⊗x=x)
pred LeftUnit(A: set univ, op: univ->univ->univ, I: univ) {
Magma[A,op]
I in A
all x: A | op[I,x] = x
}
MagmaA⊗
I∈A
∀(x∈A::f(Z,x)=Z)
UnitalAfI
f(x,R)=I
MagmaA⊗
I∈A
∀(x∈A::x=x⊗I)
MagmaA⊗
I∈A
∀(x∈A::f(x,Z)=Z)
MagmaA⊗
∀(x,y∈A::x⊗y=y⊗x)
LeftUnitA⊗I
RightUnitA⊗I
LeftZeroAfZ
RightZeroAfZ