Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions
  2. Algebra

Magma

PreviousAlgebraNextSemigroup

Last updated 1 year ago

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

Function  (A×A)  A  ⊗\textbf{Function} \; (A \times A) \; A \; \otimesFunction(A×A)A⊗


pred Magma(A: set univ, op: univ->univ->univ) {
  op in (A->A)-> one A
}
AutoInverse  A  f  I\textbf{AutoInverse} \; A \; f \; IAutoInverseAfI

Unital  A  f  I\textbf{Unital} \; A \; f\; IUnitalAfI

∀(x∈A::f(x,x)=I)\forall(x \in A ::f(x,x) = I)∀(x∈A::f(x,x)=I)


pred AutoInverse(A: set univ, f: univ->univ->univ, I: univ) {
  Unital[A,f,I]
  all x: A | f[x,x] = I
}
Idempotent  A  ⊗\textbf{Idempotent} \; A \; \otimesIdempotentA⊗

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

∀(a∈A::a⊗a=a)\forall(a \in A :: a \otimes a = a)∀(a∈A::a⊗a=a)


pred Idempotent(A: set univ, op: univ->univ->univ) {
  Magma[A,op]
  all a: A | op[a,a] = a
}
Inverse  A  f  I  y  x\textbf{Inverse} \; A \; f \; I \; y \; xInverseAfIyx

LeftInverse  A  f  I  y  x\textbf{LeftInverse} \; A \; f \; I \; y \; xLeftInverseAfIyx

RightInverse  A  f  I  y  x\textbf{RightInverse} \; A \; f \; I \; y \; xRightInverseAfIyx


pred Inverse(A: set univ, f: univ->univ->univ, I,y,x: univ) {
  LeftInverse[A,f,I,y,x]
  RightInverse[A,f,I,y,x]
}
LeftInverse  A  f  I  y  x\textbf{LeftInverse} \; A \; f \; I \; y \; xLeftInverseAfIyx

Unital  A  f  I\textbf{Unital} \; A \; f \; IUnitalAfI

f(L,x)=If(L,x) = If(L,x)=I


pred LeftInverse(A: set univ, f: univ->univ->univ, I,L,x: univ) {
  Unital[A,f,I]
  f[L,x] = I
}
LeftUnit  A  ⊗  I\textbf{LeftUnit} \; A \; \otimes \; ILeftUnitA⊗I

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

I∈AI \in AI∈A

∀(x∈A::I⊗x=x)\forall(x \in A :: I \otimes x = x )∀(x∈A::I⊗x=x)


pred LeftUnit(A: set univ, op: univ->univ->univ, I: univ) {
  Magma[A,op]
  I in A
  all x: A | op[I,x] = x
}
LeftZero  A  f  Z\textbf{LeftZero} \; A \; f \; ZLeftZeroAfZ


pred LeftZero(A: set univ, f: univ->univ->univ, Z: univ) {
  Magma[A,f]
  Z in A
  all x: A | f[Z,x] = Z
}
RightInverse  A  f  I  y  x\textbf{RightInverse} \; A \; f \; I \; y \; xRightInverseAfIyx


pred RightInverse(A: set univ, f: univ->univ->univ, I,R,x: univ) {
  Unital[A,f,I]
  f[x,R] = I
}
RightUnit  A  ⊗  I\textbf{RightUnit} \; A \; \otimes \; IRightUnitA⊗I


pred RightUnit(A: set univ, op: univ->univ->univ, I: univ) {
  Magma[A,op]
  I in A
  all x: A | x = op[x,I]
}
RightZero  A  f  Z\textbf{RightZero} \; A \; f \; ZRightZeroAfZ


pred RightZero(A: set univ, f: univ->univ->univ, Z: univ) {
  Magma[A,f]
  Z in A
  all x: A | f[x,Z] = Z
}
Symmetric  A  ⊗\textbf{Symmetric} \; A \; \otimesSymmetricA⊗


pred Symmetric(A: set univ, op: univ->univ->univ) {
  Magma[A,op]
  all x,y: A | op[x,y] = op[y,x]
}
Unital  A  ⊗  I\textbf{Unital} \; A \; \otimes \; IUnitalA⊗I


pred Unital(A: set univ, op: univ->univ->univ, I: univ) {
  LeftUnit[A,op,I]
  RightUnit[A,op,I]
}
Zero  A  f  Z\textbf{Zero} \; A \; f \; ZZeroAfZ


pred Zero(A: set univ, f: univ->univ->univ, Z: univ) {
  LeftZero[A,f,Z]
  RightZero[A,f,Z]
}

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

I∈AI \in AI∈A

∀(x∈A::f(Z,x)=Z)\forall(x \in A :: f(Z,x) = Z)∀(x∈A::f(Z,x)=Z)

Unital  A  f  I\textbf{Unital} \; A \; f \; IUnitalAfI

f(x,R)=If(x,R) = If(x,R)=I

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

I∈AI \in AI∈A

∀(x∈A::x=x⊗I)\forall(x \in A :: x = x \otimes I )∀(x∈A::x=x⊗I)

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

I∈AI \in AI∈A

∀(x∈A::f(x,Z)=Z)\forall(x \in A :: f(x,Z) = Z)∀(x∈A::f(x,Z)=Z)

Magma  A  ⊗\textbf{Magma} \; A \; \otimesMagmaA⊗

∀(x,y∈A::x⊗y=y⊗x)\forall(x,y \in A :: x \otimes y = y \otimes x)∀(x,y∈A::x⊗y=y⊗x)

LeftUnit  A  ⊗  I\textbf{LeftUnit} \; A \; \otimes \; ILeftUnitA⊗I

RightUnit  A  ⊗  I\textbf{RightUnit} \; A \; \otimes \; IRightUnitA⊗I

LeftZero  A  f  Z\textbf{LeftZero} \; A \; f \; ZLeftZeroAfZ

RightZero  A  f  Z\textbf{RightZero} \; A \; f \; ZRightZeroAfZ

🧰