Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions
  2. Algebra

Ringoid

Ringoidā€…ā€ŠAā€…ā€ŠāŠ—ā€…ā€ŠāŠ•\textbf{Ringoid} \; A \; \otimes \; \oplusRingoidAāŠ—āŠ•

Distlā€…ā€ŠAā€…ā€ŠāŠ—ā€…ā€ŠāŠ•\textbf{Distl} \; A \; \otimes \; \oplusDistlAāŠ—āŠ•

Distrā€…ā€ŠAā€…ā€ŠāŠ—ā€…ā€ŠāŠ•\textbf{Distr} \; A \; \otimes \; \oplusDistrAāŠ—āŠ•


pred Ringoid(A: set univ, tms,pls: univ->univ->univ){
  Distl[A,tms,pls]
  Distr[A,tms,pls]
}
Distlā€…ā€ŠAā€…ā€Šfā€…ā€Šg\textbf{Distl} \; A \; \text{f} \; \text{g}DistlAfg

Magmaā€…ā€ŠAā€…ā€Šf\textbf{Magma} \; A \; fMagmaAf

Magmaā€…ā€ŠAā€…ā€Šg\textbf{Magma} \; A \; gMagmaAg

āˆ€(x,y,z∈A::f(x,g(y,z))=g(f(x,y),f(x,z))\forall(x,y,z \in A :: f(x,g(y,z)) = g(f(x,y),f(x,z))āˆ€(x,y,z∈A::f(x,g(y,z))=g(f(x,y),f(x,z))


pred Distl(A: set univ, f,g: univ->univ->univ) {
  Magma[A,f]
  Magma[A,g]

  all x,y,z: A {
    f[x,g[y,z]] = g[f[x,y],f[x,z]]
  }
}
Distrā€…ā€ŠAā€…ā€Šfā€…ā€Šg\textbf{Distr} \; A \; \text{f} \; \text{g}DistrAfg

Magmaā€…ā€ŠAā€…ā€Šf\textbf{Magma} \; A \; fMagmaAf

Magmaā€…ā€ŠAā€…ā€Šg\textbf{Magma} \; A \; gMagmaAg

āˆ€(x,y,z∈A::f(g(y,z),x)=g(f(y,x),f(z,x))\forall(x,y,z \in A :: f(g(y,z),x) = g(f(y,x),f(z,x))āˆ€(x,y,z∈A::f(g(y,z),x)=g(f(y,x),f(z,x))


pred Distr(A: set univ, f,g: univ->univ->univ) {
  Magma[A,f]
  Magma[A,g]

  all x,y,z: A {
    f[g[y,z],x] = g[f[y,x],f[z,x]]
  }
}
PreviousGroupNextSemiring

Last updated 1 year ago

🧰