Complement

Complementβ€…β€ŠAβ€…β€ŠBβ€…β€ŠR:=⊀A,Bβˆ’R\textbf{Complement} \; A \; B \; R := \top_{A,B} - R

Relationβ€…β€ŠAβ€…β€ŠBβ€…β€ŠR\textbf{Relation} \; A \; B \; R


Notation.

  1. Complementβ€…β€ŠAβ€…β€ŠBβ€…β€ŠR\textbf{Complement} \; A \; B \; R can be written Complementβ€…β€ŠR\textbf{Complement} \; R when AA and BBare clear from the context.

  2. Complementβ€…β€ŠR\textbf{Complement} \; R can be written symbolically as Β¬R\neg R or Rβ€Ύ\overline{R}.


fun Co(A,B: set univ, R: A->B) : A->B {
  (A->B) - R
}

Last updated