Complement

Complement  A  B  R:=A,BR\textbf{Complement} \; A \; B \; R := \top_{A,B} - R

Relation  A  B  R\textbf{Relation} \; A \; B \; R


Notation.

  1. Complement  A  B  R\textbf{Complement} \; A \; B \; R can be written Complement  R\textbf{Complement} \; R when AA and BBare clear from the context.

  2. Complement  R\textbf{Complement} \; R can be written symbolically as ¬R\neg R or R\overline{R}.


fun Co(A,B: set univ, R: A->B) : A->B {
  (A->B) - R
}

Last updated