Preorder

Aboveā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šy\textbf{Above} \; A \; R \; S \; y

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Includesā€…ā€ŠSā€…ā€ŠA\textbf{Includes} \; S \; A

yāˆˆSy \in S

āˆ€(s:sāˆˆS:R.s.y)\forall(s : s \in S : R.s.y)


Notation.

  1. Aboveā€…ā€ŠSā€…ā€Šy\textbf{Above} \; S \; y abbreviates Aboveā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šy\textbf{Above} \; A \; R \; S \; y when AA and RR are clear from the context.

  2. Aboveā€…ā€ŠSā€…ā€Šy\textbf{Above} \; S \; y is abbreviated by SāŠ‘yS \sqsubseteq y.


pred Above(A: set univ, R: univ->univ, S: set univ, y: univ) {
  Preorder[A,R]
  S in A
  y in A
  all s: univ | s in S implies s->y in R 
}
Aboveā€…ā€ŠAā€…ā€ŠRā€…ā€ŠS:={ā€…ā€Šy:Aboveā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šyā€…ā€Š}\textbf{Above} \; A \; R \; S := \{ \; y : \textbf{Above} \; A \; R \; S \; y \; \}

fun Above(A: set univ, R: univ->univ, S: set univ) : set univ {
  { y: univ | Above[A,R,S,y] }
}
Belowā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šy\textbf{Below} \; A \; R \; S \; y

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Includesā€…ā€ŠSā€…ā€ŠA\textbf{Includes} \; S \; A

yāˆˆAy \in A

āˆ€(s:sāˆˆS:R.y.s)\forall(s : s \in S : R.y.s)


Notation.

  1. Belowā€…ā€ŠSā€…ā€Šy\textbf{Below} \; S \; y abbreviates Belowā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šy\textbf{Below} \; A \; R \; S \; y when AA and RR are clear from the context.

  2. Belowā€…ā€ŠSā€…ā€Šy\textbf{Below} \; S \; y is abbreviated by SāŠ’yS \sqsupseteq y.


pred Below(A: set univ, R: univ->univ, S: set univ, y: univ) {
  Preorder[A,R]
  S in A
  y in A
  all s: univ | s in S implies y->s in R 
}
Belowā€…ā€ŠAā€…ā€ŠRā€…ā€ŠS:={ā€…ā€Šy:Belowā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šyā€…ā€Š}\textbf{Below} \; A \; R \; S := \{ \; y : \textbf{Below} \; A \; R \; S \; y \; \}

fun Below(A: set univ, R: univ->univ, S: set univ) : set univ {
  { y: univ | Below[A,R,S,y] }
}
Equivalentā€…ā€ŠAā€…ā€ŠRā€…ā€Šxā€…ā€Šy\textbf{Equivalent} \; A \; R \; x \; y

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

xāˆˆAx \in A

yāˆˆAy \in A

R.x.yāˆ§R.y.xR.x.y \wedge R.y.x


Notation.

  1. Equivalentā€…ā€Šxā€…ā€Šy\textbf{Equivalent} \; x \; y abbreviates Equivalentā€…ā€ŠAā€…ā€ŠRā€…ā€Šxā€…ā€Šy\textbf{Equivalent} \; A \; R \; x \; y when AA and RR are clear from the context.

  2. Equivalentā€…ā€Šxā€…ā€Šy\textbf{Equivalent} \; x \; y is abbreviated by xā‰…yx \cong y.


pred Equivalent(A: set univ, R: univ->univ, x,y: univ) {
  Preorder[A,R]
  x in A
  y in A
  x->y in R and y->x in R
}
Oppositeā€…ā€ŠAā€…ā€ŠR:={x,yāˆˆA:R.x.y:pairā€…ā€Šyā€…ā€Šx}\textbf{Opposite} \; A \; R := \{ x,y \in A : R.x.y : \textbf{pair} \; y \; x \}

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Productā€…ā€ŠAā€…ā€ŠBā€…ā€ŠRā€…ā€ŠS:={ā€…ā€Šp,qāˆˆAƗB:R.(fst.p).(fst.q)āˆ§S.(snd.p).(snd.q):pairā€…ā€Špā€…ā€Šqā€…ā€Š}\textbf{Product} \; A \; B \; R \; S := \{ \; p,q \in A \times B : R.(\textbf{fst}.p).(\textbf{fst}.q) \wedge S.(\textbf{snd}.p).(\textbf{snd}.q) : \textbf{pair} \; p \; q \; \}

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Preorderā€…ā€ŠBā€…ā€ŠS\textbf{Preorder} \; B \; S


Notation.

  1. Productā€…ā€ŠRā€…ā€ŠS\textbf{Product} \; R \; S abbreviates Productā€…ā€ŠAā€…ā€ŠBā€…ā€ŠRā€…ā€ŠS\textbf{Product} \; A \; B \; R \; S when AA and BB are clear from the context.

  2. Productā€…ā€ŠRā€…ā€ŠS\textbf{Product} \; R \; S can be written RƗSR \times S.

Last updated