Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions

Preorder

Above  A  R  S  y\textbf{Above} \; A \; R \; S \; yAboveARSy

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Includes  S  A\textbf{Includes} \; S \; AIncludesSA

y∈Sy \in Sy∈S

∀(s:s∈S:R.s.y)\forall(s : s \in S : R.s.y)∀(s:s∈S:R.s.y)


Notation.

  1. Above  S  y\textbf{Above} \; S \; yAboveSy abbreviates Above  A  R  S  y\textbf{Above} \; A \; R \; S \; yAboveARSy when AAA and RRR are clear from the context.

  2. Above  S  y\textbf{Above} \; S \; yAboveSy is abbreviated by S⊑yS \sqsubseteq yS⊑y.


pred Above(A: set univ, R: univ->univ, S: set univ, y: univ) {
  Preorder[A,R]
  S in A
  y in A
  all s: univ | s in S implies s->y in R 
}
Above  A  R  S:={  y:Above  A  R  S  y  }\textbf{Above} \; A \; R \; S := \{ \; y : \textbf{Above} \; A \; R \; S \; y \; \}AboveARS:={y:AboveARSy}

fun Above(A: set univ, R: univ->univ, S: set univ) : set univ {
  { y: univ | Above[A,R,S,y] }
}
Below  A  R  S  y\textbf{Below} \; A \; R \; S \; yBelowARSy

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Includes  S  A\textbf{Includes} \; S \; AIncludesSA

y∈Ay \in Ay∈A

∀(s:s∈S:R.y.s)\forall(s : s \in S : R.y.s)∀(s:s∈S:R.y.s)


Notation.

  1. Below  S  y\textbf{Below} \; S \; yBelowSy abbreviates Below  A  R  S  y\textbf{Below} \; A \; R \; S \; yBelowARSy when AAA and RRR are clear from the context.

  2. Below  S  y\textbf{Below} \; S \; yBelowSy is abbreviated by S⊒yS \sqsupseteq yS⊒y.


pred Below(A: set univ, R: univ->univ, S: set univ, y: univ) {
  Preorder[A,R]
  S in A
  y in A
  all s: univ | s in S implies y->s in R 
}
Below  A  R  S:={  y:Below  A  R  S  y  }\textbf{Below} \; A \; R \; S := \{ \; y : \textbf{Below} \; A \; R \; S \; y \; \}BelowARS:={y:BelowARSy}

fun Below(A: set univ, R: univ->univ, S: set univ) : set univ {
  { y: univ | Below[A,R,S,y] }
}
Equivalent  A  R  x  y\textbf{Equivalent} \; A \; R \; x \; yEquivalentARxy

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

x∈Ax \in Ax∈A

y∈Ay \in Ay∈A

R.x.y∧R.y.xR.x.y \wedge R.y.xR.x.y∧R.y.x


Notation.

  1. Equivalent  x  y\textbf{Equivalent} \; x \; yEquivalentxy abbreviates Equivalent  A  R  x  y\textbf{Equivalent} \; A \; R \; x \; yEquivalentARxy when AAA and RRR are clear from the context.

  2. Equivalent  x  y\textbf{Equivalent} \; x \; yEquivalentxy is abbreviated by x≅yx \cong yx≅y.


pred Equivalent(A: set univ, R: univ->univ, x,y: univ) {
  Preorder[A,R]
  x in A
  y in A
  x->y in R and y->x in R
}
Opposite  A  R:={x,y∈A:R.x.y:pair  y  x}\textbf{Opposite} \; A \; R := \{ x,y \in A : R.x.y : \textbf{pair} \; y \; x \}OppositeAR:={x,y∈A:R.x.y:pairyx}

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Product  A  B  R  S:={  p,q∈A×B:R.(fst.p).(fst.q)∧S.(snd.p).(snd.q):pair  p  q  }\textbf{Product} \; A \; B \; R \; S := \{ \; p,q \in A \times B : R.(\textbf{fst}.p).(\textbf{fst}.q) \wedge S.(\textbf{snd}.p).(\textbf{snd}.q) : \textbf{pair} \; p \; q \; \}ProductABRS:={p,q∈A×B:R.(fst.p).(fst.q)∧S.(snd.p).(snd.q):pairpq}

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Preorder  B  S\textbf{Preorder} \; B \; SPreorderBS


Notation.

  1. Product  R  S\textbf{Product} \; R \; SProductRS abbreviates Product  A  B  R  S\textbf{Product} \; A \; B \; R \; SProductABRS when AAA and BBB are clear from the context.

  2. Product  R  S\textbf{Product} \; R \; SProductRS can be written R×SR \times SR×S.

PreviousPower SetNextPreservation of Extrema

Last updated 1 year ago

🧰