Last updated 10 months ago
Relationā āAā āBā āR\textbf{Relation} \; A \; B \; RRelationABR
Relationā āAā āBā āS\textbf{Relation} \; A \; B \; SRelationABS
ā(xāA:ā(yāB:R.x.y:S.x.y))\forall (x \in A : \forall (y \in B : R.x.y : S.x.y))ā(xāA:ā(yāB:R.x.y:S.x.y))
Notation.
Includesā āAā āBā āRā āS\textbf{Includes} \; A \; B \; R \; SIncludesABRS can be abbreviated by Includesā āRā āS\textbf{Includes} \; R \; SIncludesRSwhen AAA and BBB are clear from the context.
Includesā āRā āS\textbf{Includes} \; R \; SIncludesRS can be written RāSR \subseteq SRāS.
pred Includes(A,B: set univ, R,S: univ->univ) { Relation[A,B,R] Relation[A,B,S] R in S }
Includesā āAā āBā āSā āR\textbf{Includes} \; A \; B \; S \; RIncludesABSR
Withinā āAā āBā āRā āS\textbf{Within} \; A \; B \; R \; SWithinABRS can be abbreviated by Withinā āRā āS\textbf{Within} \; R \; SWithinRSwhen AAA and BBB are clear from the context.
Withinā āRā āS\textbf{Within} \; R \; SWithinRS can be written RāSR \supseteq SRāS.
pred Within(A,B: set univ, R,S: univ->univ) { Includes[A,B,S,R] }