Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Checks
  2. Algebra

Boolean Ring

Has Zero Divisors

∃(p,q∈Aāˆ’Zero:p≠q:pāŠ—q=Zero)\exists(p,q \in A - \text{Zero}: p \neq q : p \otimes q = \text{Zero})∃(p,q∈Aāˆ’Zero:p=q:pāŠ—q=Zero)

BooleanRingā€…ā€ŠAā€…ā€ŠāŠ—ā€…ā€ŠāŠ•ā€…ā€ŠZeroā€…ā€ŠOne\textbf{BooleanRing} \; A \; \otimes \; \oplus \; \text{Zero} \; \text{One}BooleanRingAāŠ—āŠ•ZeroOne


sig A {
  , tms: A->A
  , pls: A->A
}

sig Zero, One in A {}

has_zero_divisors: check {
  { BooleanRing[A,tms,pls,Zero,One]
    #A > 2
  } implies {
    some disj p,q: A-Zero {
      tms[p,q] = Zero
    }
  }
} for 10
PreviousRingNextBoolean Group

Last updated 1 year ago

šŸ”¬