Order Taxonomy
AntisymmetricAR
EndoRelationAR
∀(x,y∈A:R.x.y∧R.y.x:x=y)
pred Antisymmetric(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R and y->x in R implies x = y
}
CoDiscreteAR
EndoRelationAR
∀(x,y∈A::R.x.y)
pred CoDiscrete(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R
}
ConnectedAR
EndoRelationAR
∀(x,y∈A::R.x.y∨R.y.x)
pred Connected(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R or y->x in R
}
DiscreteAR
EndoRelationAR
∀(x,y∈A::R.x.y≡x=y)
pred Discrete(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R iff x = y
}
EquivalenceAR
PreorderAR
SymmetricAR
pred Equivalence(A: set univ, R: univ->univ) {
Preorder[A,R]
Symmetric[A,R]
}
PartialOrderAR
PreorderAR
AntisymmetricAR
pred PartialOrder(A: set univ, R: univ->univ) {
Preorder[A,R]
Antisymmetric[A,R]
}
PreorderAR
ReflexiveAR
TransitiveAR
pred Preorder(A: set univ, R: univ->univ) {
Reflexive[A,R]
Transitive[A,R]
}
ReflexiveAR
EndoRelationAR
∀(x∈A::R.x.x)
pred Reflexive(A: set univ, R: univ -> univ) {
EndoRelation[A,R]
all x: A | x->x in R
}
SymmetricAR
EndoRelationAR
∀(x,y∈A:R.x.y:R.y.x)
pred Symmetric(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R implies y->x in R
}
Last updated