Order Taxonomy

Antisymmetricā€…ā€ŠAā€…ā€ŠR\textbf{Antisymmetric} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(x,yāˆˆA:R.x.yāˆ§R.y.x:x=y)\forall ( x,y \in A : R.x.y \wedge R.y.x : x = y )


pred Antisymmetric(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R and y->x in R implies x = y
}
CoDiscreteā€…ā€ŠAā€…ā€ŠR\textbf{CoDiscrete} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(x,yāˆˆA::R.x.y)\forall( x,y \in A :: R.x.y )


pred CoDiscrete(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R
}
Connectedā€…ā€ŠAā€…ā€ŠR\textbf{Connected} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(x,yāˆˆA::R.x.yāˆØR.y.x)\forall ( x,y \in A : : R.x.y \vee R.y.x )


pred Connected(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R or y->x in R
}
Discreteā€…ā€ŠAā€…ā€ŠR\textbf{Discrete} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(x,yāˆˆA::R.x.yā‰”x=y)\forall( x,y \in A :: R.x.y \equiv x = y )


pred Discrete(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R iff x = y
}
Equivalenceā€…ā€ŠAā€…ā€ŠR\textbf{Equivalence} \; A \; R

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Symmetricā€…ā€ŠAā€…ā€ŠR\textbf{Symmetric} \; A \; R


pred Equivalence(A: set univ, R: univ->univ) {
  Preorder[A,R]
  Symmetric[A,R]
}
PartialOrderā€…ā€ŠAā€…ā€ŠR\textbf{PartialOrder} \; A \; R

Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Antisymmetricā€…ā€ŠAā€…ā€ŠR\textbf{Antisymmetric} \; A \; R


pred PartialOrder(A: set univ, R: univ->univ) {
  Preorder[A,R]
  Antisymmetric[A,R]
}
Perā€…ā€ŠAā€…ā€ŠR\textbf{Per} \; A \; R

Symmetricā€…ā€ŠAā€…ā€ŠR\textbf{Symmetric} \; A \; R

Transitiveā€…ā€ŠAā€…ā€ŠR\textbf{Transitive} \; A \; R


pred Per(A: set univ, R: univ->univ) {
  Symmetric[A,R]
  Transitive[A,R]
}
Preorderā€…ā€ŠAā€…ā€ŠR\textbf{Preorder} \; A \; R

Reflexiveā€…ā€ŠAā€…ā€ŠR\textbf{Reflexive} \; A \; R

Transitiveā€…ā€ŠAā€…ā€ŠR\textbf{Transitive} \; A \; R


pred Preorder(A: set univ, R: univ->univ) {
  Reflexive[A,R]
  Transitive[A,R]
}
Reflexiveā€…ā€ŠAā€…ā€ŠR\textbf{Reflexive} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(xāˆˆA::R.x.x)\forall ( x \in A : : R.x.x )


pred Reflexive(A: set univ, R: univ -> univ) {
  EndoRelation[A,R]
  all x: A | x->x in R
}
Symmetricā€…ā€ŠAā€…ā€ŠR\textbf{Symmetric} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(x,yāˆˆA:R.x.y:R.y.x)\forall ( x,y \in A : R.x.y : R.y.x )


pred Symmetric(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R implies y->x in R
}
Toleranceā€…ā€ŠAā€…ā€ŠR\textbf{Tolerance} \; A \; R

Symmetricā€…ā€ŠAā€…ā€ŠR\textbf{Symmetric} \; A \; R

Reflexiveā€…ā€ŠAā€…ā€ŠR\textbf{Reflexive} \; A \; R


pred Tolerance(A: set univ, R: univ->univ) {
  Symmetric[A,R]
  Reflexive[A,R]
}
Transitiveā€…ā€ŠAā€…ā€ŠR\textbf{Transitive} \; A \; R

EndoRelationā€…ā€ŠAā€…ā€ŠR\textbf{EndoRelation} \; A \; R

āˆ€(x,y,zāˆˆA:R.x.yāˆ§R.y.z:R.x.z)\forall ( x,y,z \in A : R.x.y \wedge R.y.z : R.x.z )


pred Transitive(A: set univ, R: univ -> univ) {
  EndoRelation[A,R]
  all x,y,z: A | x->y in R and y->z in R implies x->z in R
}

Last updated