Order Taxonomy
AntisymmetricAR
EndoRelationAR
β(x,yβA:R.x.yβ§R.y.x:x=y)
pred Antisymmetric(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R and y->x in R implies x = y
}CoDiscreteAR
EndoRelationAR
β(x,yβA::R.x.y)
pred CoDiscrete(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R
}ConnectedAR
EndoRelationAR
β(x,yβA::R.x.yβ¨R.y.x)
pred Connected(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R or y->x in R
}DiscreteAR
EndoRelationAR
β(x,yβA::R.x.yβ‘x=y)
pred Discrete(A: set univ, R: univ->univ) {
EndoRelation[A,R]
all x,y: A | x->y in R iff x = y
}EquivalenceAR
PreorderAR
SymmetricAR
pred Equivalence(A: set univ, R: univ->univ) {
Preorder[A,R]
Symmetric[A,R]
}Last updated