Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions

Order Taxonomy

Antisymmetric  A  R\textbf{Antisymmetric} \; A \; RAntisymmetricAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x,y∈A:R.x.y∧R.y.x:x=y)\forall ( x,y \in A : R.x.y \wedge R.y.x : x = y )∀(x,y∈A:R.x.y∧R.y.x:x=y)


pred Antisymmetric(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R and y->x in R implies x = y
}
CoDiscrete  A  R\textbf{CoDiscrete} \; A \; RCoDiscreteAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x,y∈A::R.x.y)\forall( x,y \in A :: R.x.y )∀(x,y∈A::R.x.y)


pred CoDiscrete(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R
}
Connected  A  R\textbf{Connected} \; A \; RConnectedAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x,y∈A::R.x.y∨R.y.x)\forall ( x,y \in A : : R.x.y \vee R.y.x )∀(x,y∈A::R.x.y∨R.y.x)


pred Connected(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R or y->x in R
}
Discrete  A  R\textbf{Discrete} \; A \; RDiscreteAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x,y∈A::R.x.y≡x=y)\forall( x,y \in A :: R.x.y \equiv x = y )∀(x,y∈A::R.x.y≡x=y)


pred Discrete(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R iff x = y
}
Equivalence  A  R\textbf{Equivalence} \; A \; REquivalenceAR

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Symmetric  A  R\textbf{Symmetric} \; A \; RSymmetricAR


pred Equivalence(A: set univ, R: univ->univ) {
  Preorder[A,R]
  Symmetric[A,R]
}
PartialOrder  A  R\textbf{PartialOrder} \; A \; RPartialOrderAR

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Antisymmetric  A  R\textbf{Antisymmetric} \; A \; RAntisymmetricAR


pred PartialOrder(A: set univ, R: univ->univ) {
  Preorder[A,R]
  Antisymmetric[A,R]
}
Per  A  R\textbf{Per} \; A \; RPerAR

Symmetric  A  R\textbf{Symmetric} \; A \; RSymmetricAR

Transitive  A  R\textbf{Transitive} \; A \; RTransitiveAR


pred Per(A: set univ, R: univ->univ) {
  Symmetric[A,R]
  Transitive[A,R]
}
Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Reflexive  A  R\textbf{Reflexive} \; A \; RReflexiveAR

Transitive  A  R\textbf{Transitive} \; A \; RTransitiveAR


pred Preorder(A: set univ, R: univ->univ) {
  Reflexive[A,R]
  Transitive[A,R]
}
Reflexive  A  R\textbf{Reflexive} \; A \; RReflexiveAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x∈A::R.x.x)\forall ( x \in A : : R.x.x )∀(x∈A::R.x.x)


pred Reflexive(A: set univ, R: univ -> univ) {
  EndoRelation[A,R]
  all x: A | x->x in R
}
Symmetric  A  R\textbf{Symmetric} \; A \; RSymmetricAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x,y∈A:R.x.y:R.y.x)\forall ( x,y \in A : R.x.y : R.y.x )∀(x,y∈A:R.x.y:R.y.x)


pred Symmetric(A: set univ, R: univ->univ) {
  EndoRelation[A,R]
  all x,y: A | x->y in R implies y->x in R
}
Tolerance  A  R\textbf{Tolerance} \; A \; R ToleranceAR

Symmetric  A  R\textbf{Symmetric} \; A \; RSymmetricAR

Reflexive  A  R\textbf{Reflexive} \; A \; RReflexiveAR


pred Tolerance(A: set univ, R: univ->univ) {
  Symmetric[A,R]
  Reflexive[A,R]
}
Transitive  A  R\textbf{Transitive} \; A \; RTransitiveAR

EndoRelation  A  R\textbf{EndoRelation} \; A \; REndoRelationAR

∀(x,y,z∈A:R.x.y∧R.y.z:R.x.z)\forall ( x,y,z \in A : R.x.y \wedge R.y.z : R.x.z )∀(x,y,z∈A:R.x.y∧R.y.z:R.x.z)


pred Transitive(A: set univ, R: univ -> univ) {
  EndoRelation[A,R]
  all x,y,z: A | x->y in R and y->z in R implies x->z in R
}
PreviousRelation TaxonomyNextAlgebra

Last updated 1 year ago

🧰