Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Definitions

Natural Projection

PreviousMonotone MapNextNon-Preservation of Extrema

Last updated 1 year ago

NaturalProjection  A  θ  η\textbf{NaturalProjection} \; A \; \theta \; \etaNaturalProjectionAθη

Equivalence  A  θ\textbf{Equivalence} \; A \; \thetaEquivalenceAθ

EndoFunction  A  η\textbf{EndoFunction} \; A \; \etaEndoFunctionAη

ker  η=θ\textbf{ker} \; \eta = \thetakerη=θ

η⊆ker  η\eta \subseteq \textbf{ker} \; \etaη⊆kerη


Notation: η∈A→θ/A\eta \in A \to \theta / Aη∈A→θ/A denotes NaturalProjection  A  θ  η\textbf{NaturalProjection} \; A \; \theta \; \etaNaturalProjectionAθη


pred NaturalProjection(A: set univ, Theta,eta: univ->univ) {
  Equivalence[A,Theta]
  EndoFunction[A,eta]
  eta.~eta = Theta
  eta in eta.~eta
}
🧰