Equivalence A θ\textbf{Equivalence} \; A \; \thetaEquivalenceAθ
EndoFunction A η\textbf{EndoFunction} \; A \; \etaEndoFunctionAη
ker η=θ\textbf{ker} \; \eta = \thetakerη=θ
η⊆ker η\eta \subseteq \textbf{ker} \; \etaη⊆kerη
Notation: η∈A→θ/A\eta \in A \to \theta / Aη∈A→θ/A denotes NaturalProjection A θ η\textbf{NaturalProjection} \; A \; \theta \; \etaNaturalProjectionAθη
pred NaturalProjection(A: set univ, Theta,eta: univ->univ) { Equivalence[A,Theta] EndoFunction[A,eta] eta.~eta = Theta eta in eta.~eta }
Last updated 8 months ago