Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Under versus Over
  • Composition versus Under
  • Composition versus Over
  1. Checks

Relation Division

Comparing left and right divisions

PreviousExtremal ElementsNextAlgebra

Last updated 1 year ago

Under versus Over

X\Y=(Y∘/X∘)∘X \backslash Y = (Y^\circ / X^\circ)^\circX\Y=(Y∘/X∘)∘

sig A { X: set B }

sig B {}

sig C { Y: set B }

check {
  Under[A,B,C,X,Y] = ~(Over[A,B,C,~Y,~X])
} for 10

Composition versus Under

X∘ZāŠ†Y≔ZāŠ†X\YX \circ Z \subseteq Y \equiv Z \subseteq X \backslash YX∘ZāŠ†Y≔ZāŠ†X\Y

sig A { X: set B }

sig B {}

sig C { Y: set B, Z: set A}

check {
  Z.X in Y iff Z in Under[A,B,C,X,Y]
} for 10

Composition versus Over

Z∘XāŠ†Y≔ZāŠ†Y/XZ \circ X \subseteq Y \equiv Z \subseteq Y / XZ∘XāŠ†Y≔ZāŠ†Y/X

sig A { Z: set C}

sig B { X: set A, Y: set C}

sig C {}

check {
  X.Z in Y iff Z in Over[A,B,C,Y,X]
} for 10
šŸ”¬