Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Right division (Over)
  • Left division (Under)
  1. Definitions

Over and Under

Relation division

Right division (Over)

Overā€…ā€ŠAā€…ā€ŠBā€…ā€ŠCā€…ā€ŠXā€…ā€ŠY:={ā€…ā€Ša∈A,c∈C:āˆ€(b∈B:(b,a)∈Y:(b,c)∈X):(a,c)ā€…ā€Š}\textbf{Over} \; A \; B \; C \; X \; Y := \{\; a \in A, c \in C : \forall( b\in B : (b,a) \in Y : (b,c) \in X) : (a,c) \;\}OverABCXY:={a∈A,c∈C:āˆ€(b∈B:(b,a)∈Y:(b,c)∈X):(a,c)}

Relationā€…ā€ŠBā€…ā€ŠAā€…ā€ŠX\textbf{Relation} \; B \; A \; XRelationBAX

Relationā€…ā€ŠBā€…ā€ŠCā€…ā€ŠY\textbf{Relation} \; B \; C \; YRelationBCY


Notation.

  1. Overā€…ā€ŠAā€…ā€ŠBā€…ā€ŠCā€…ā€ŠXā€…ā€ŠY\textbf{Over} \; A \; B \; C \; X \; YOverABCXY can be written Overā€…ā€ŠXā€…ā€ŠY\textbf{Over} \; X \; YOverXY when AAA, BBB and CCC are clear from the context.

  2. Overā€…ā€ŠXā€…ā€ŠY\textbf{Over} \; X \; YOverXY is written in symbols as X/YX / YX/Y.


fun Over(A,B,C: set univ, X: B->C, Y: B->A) : A->C {
  { a: A, c: C | all b: B | b->a in Y implies b->c in X }
}

Left division (Under)

Underā€…ā€ŠAā€…ā€ŠBā€…ā€ŠCā€…ā€ŠXā€…ā€ŠY:={ā€…ā€Šc∈C,a∈A:āˆ€(b∈B:(a,b)∈X:(c,b)∈Y):(c,a)ā€…ā€Š}\textbf{Under} \; A \; B \; C \; X \; Y := \{\; c \in C, a \in A : \forall( b\in B : (a,b) \in X : (c,b) \in Y ) : (c,a)\;\}UnderABCXY:={c∈C,a∈A:āˆ€(b∈B:(a,b)∈X:(c,b)∈Y):(c,a)}

Relationā€…ā€ŠAā€…ā€ŠBā€…ā€ŠX\textbf{Relation} \; A \; B \; XRelationABX

Relationā€…ā€ŠCā€…ā€ŠBā€…ā€ŠY\textbf{Relation} \; C \; B \; YRelationCBY


Notation.

  1. Underā€…ā€ŠAā€…ā€ŠBā€…ā€ŠCā€…ā€ŠXā€…ā€ŠY\textbf{Under} \; A \; B \; C \; X \; YUnderABCXYcan be written Underā€…ā€ŠXā€…ā€ŠY\textbf{Under} \; X \; YUnderXYwhen AAA, BBB and CCC are clear from the context.

  2. Underā€…ā€ŠXā€…ā€ŠY\textbf{Under} \; X \; YUnderXY is written in symbols as X\YX \backslash YX\Y.


fun Under(A,B,C: set univ, X: A->B, Y: C->B) : C->A {
  { c: C, a: A | all b: B | a->b in X implies c->b in Y }
}
PreviousNon-Preservation of ExtremaNextPower Set

Last updated 1 year ago

🧰