Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • āœ’ļøNotation
    • šŸ˜…An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • šŸ”¬Checks
    • šŸŽ™ļøA few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  1. Checks

Below

One point

Belowā€…ā€ŠAā€…ā€ŠRā€…ā€Š{x}ā€…ā€Šy≔R.y.x\textbf{Below} \; A \; R \; \{ x \}\; y \equiv R.y.xBelowAR{x}y≔R.y.x


sig A { R: set A }

check {
  { Preorder[A,R]
  } implies {
    all x,y: A {
      Below[A,R,x,y]
      iff
      y->x in R
    }
  }
} for 10 expect 0
Range Disjunction

Belowā€…ā€ŠAā€…ā€ŠRā€…ā€Š(S∪T)ā€…ā€Šy≔Belowā€…ā€ŠAā€…ā€ŠRā€…ā€ŠSā€…ā€Šy∧Belowā€…ā€ŠAā€…ā€ŠRā€…ā€ŠTā€…ā€Šy\textbf{Below} \; A \; R \; (S \cup T) \; y \equiv \textbf{Below} \; A \; R \; S \; y \wedge \textbf{Below} \; A \; R \; T \; yBelowAR(S∪T)y≔BelowARSy∧BelowARTy


sig A { R: set A }

sig S,T in A {}

check {
  { Preorder[A,R]
  } implies {
    all y: A {
      Below[A,R,S+T,y]
      iff
      Below[A,R,S,y] and Below[A,R,T,y]
    }
  }
} for 10 expect 0
Empty Range

Belowā€…ā€ŠAā€…ā€ŠRā€…ā€Šāˆ…ā€…ā€Šy≔true\textbf{Below} \; A \; R \; \empty \; y \equiv \textbf{true}BelowARāˆ…y≔true


sig A { R: set A }

check {
  { Preorder[A,R]
  } implies {
    all y: A {
      Below[A,R,none,y]
    }
  }
} for 10 expect 0
PreviousIndirect Equality and InclusionNextExtremal Elements

Last updated 1 year ago

šŸ”¬