Extremal Elements
The various extrema must participate in certain relationships predicted by order theory.
Absorption
JoinAR{x,(MeetAR{x,y})}β x
sig A { R: set A }
check {
{ Preorder[A,R]
} implies {
all x,y: A {
Equivalent[A,R,Join[A,R,x+Meet[A,R,x+y]],x]
}
}
} for 10 expect 0Absorption
JoinAR{x,(MeetAR{x,y})}β x
sig A { R: set A }
check {
{ Preorder[A,R]
} implies {
all x,y: A {
Equivalent[A,R,Meet[A,R,x+Join[A,R,x+y]],x]
}
}
} for 10 expect 0Join as Meet of Above
JoinARS=MeetAR(AboveARS)
sig A { R: set A }
sig S in A {}
check {
Join[A,R,S] = Meet[A,R,Above[A,R,S]]
} for 10 expect 0Meet as Join of Below
MeetARS=JoinAR(BelowARS)
sig A { R: set A }
sig S in A {}
check {
Meet[A,R,S] = Join[A,R,Below[A,R,S]]
} for 10 expect 0Join versus JoinExt
JoinExtARAY=JoinARY
sig A { R: set A }
sig Y in A {}
check {
{ some Join[A,R,Y]
} implies {
JoinExt[A,R,A,Y] = Join[A,R,Y]
}
} for 10 expect 0Meet
Binary Operator
Join
Binary Operator
Last updated