Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Greatest (Max)
  • Join (Supremum)
  • Extended Join
  • Least (Min)
  • Meet (Infimum)
  • Extended Meet
  1. Definitions

Extremal Elements

Greatest (Max)

Greatest  A  R  Y  x\textbf{Greatest} \; A \; R \; Y \; xGreatestARYx

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Includes  A  Y\textbf{Includes} \; A \; YIncludesAY

x∈Yx \in Yx∈Y

Above  A  R  A  x\textbf{Above} \; A \; R \; A \; xAboveARAx


Notation.

  1. Greatest  A  R  Y  x\textbf{Greatest} \; A \; R \; Y \; xGreatestARYx can be written Greatest  Y  x\textbf{Greatest} \; Y \; xGreatestYx when AAA and RRR are clear from the context.

  2. Greatest  Y  x\textbf{Greatest} \; Y \; xGreatestYx can be written x=max  Yx = \textbf{max} \; Yx=maxY.

pred Greatest(A: set univ, R: univ->univ, Y: set univ, x: univ) {
  Preorder[A,R]
  Includes[A,Y]
  x in Y
  Above[A,R,A,x]
}
Greatest  A  R  Y:={  x:Greatest  A  R  Y  x  }\textbf{Greatest} \; A \; R \; Y := \{\; x : \textbf{Greatest} \; A \; R \; Y \; x\;\}GreatestARY:={x:GreatestARYx}

Notation.

  1. Greatest  A  R  Y\textbf{Greatest} \; A \; R \; YGreatestARY can be written Greatest  Y\textbf{Greatest} \; Y GreatestY when AAA and RRR are clear from the context.

  2. Greatest  Y\textbf{Greatest} \; YGreatestY can be written max  Y\textbf{max} \; YmaxY.


fun Greatest(A: set univ, R: univ->univ, Y: set univ) : set univ {
  { x: Y | Greatest[A,R,Y,x] }
}

Join (Supremum)

Join  A  R  S  x\textbf{Join} \; A \; R \; S \; xJoinARSx

Above  A  R  S  x\textbf{Above} \; A \; R \; S \; xAboveARSx

∀(y:Above  A  R  S  y:R.x.y)\forall(y : \textbf{Above} \; A \; R \; S \; y : R.x.y)∀(y:AboveARSy:R.x.y)


pred Join(A: set univ, R: univ->univ, S: set univ, x: univ) {
  Above[A,R,S,x]
  all y: univ | Above[A,R,S,y] implies x->y in R
}
Join  A  R  S\textbf{Join} \; A \; R \; SJoinARS

{  x:Join  A  R  S  x  }\{ \; x : \textbf{Join} \; A \; R \; S \; x \; \}{x:JoinARSx}


fun Join(A: set univ, R: univ->univ, S: set univ) : set univ {
  { x: univ | Join[A,R,S,x] }
}

Extended Join

JoinExt  A  R  Z  Y  x\textbf{JoinExt} \; A \; R \; Z \; Y \; xJoinExtARZYx

Includes  Z  A\textbf{Includes} \; Z \; AIncludesZA

Includes  Y  Z\textbf{Includes} \; Y \; ZIncludesYZ

x∈Zx \in Zx∈Z

∀(z∈Z::Below  A  R  Y  z≡R.z.x)\forall(z \in Z :: \textbf{Below} \; A \; R \; Y \; z \equiv R.z.x)∀(z∈Z::BelowARYz≡R.z.x)


Notation.

  1. JoinExt  Z  Y  x\textbf{JoinExt} \; Z \; Y \; xJoinExtZYx abbreviates JoinExt  A  R  Z  Y  x\textbf{JoinExt} \; A \; R \; Z \; Y \; xJoinExtARZYx when AAA and RRR are clear from the context.

  2. JoinExt  Z  Y  x\textbf{JoinExt} \; Z \; Y \; xJoinExtZYx is denoted by x=⊔ZYx = \sqcup_Z Yx=⊔Z​Y.


pred JoinExt(A: set univ, R: univ->univ, Z,Y: set univ, x: univ) {
  Includes[Z,A]
  Includes[Y,Z]
  x in Z
  all z: Z | Above[A,R,Y,z] iff x->z in R
}
JoinExt  A  R  Z  Y:={  x:JoinExt  A  R  Z  Y  x  }\textbf{JoinExt} \; A \; R \; Z \; Y := \{\; x : \textbf{JoinExt} \; A \; R \; Z \; Y \; x\;\}JoinExtARZY:={x:JoinExtARZYx}

Notation.

  1. JoinExt  Z  Y\textbf{JoinExt} \; Z \; Y JoinExtZY abbreviates JoinExt  A  R  Z  Y\textbf{JoinExt} \; A \; R \; Z \; Y JoinExtARZY when AAA and RRR are clear from the context.

  2. JoinExt  Z  Y\textbf{JoinExt} \; Z \; Y JoinExtZYis denoted by ⊔ZY\sqcup_Z Y⊔Z​Y.


fun JoinExt(A: set univ, R: univ->univ, Z,Y: set univ) : set univ {
  { x: Z | JoinExt[A,R,Z,Y,x] }
}

Least (Min)

Least  A  R  Y  x\textbf{Least} \; A \; R \; Y \; xLeastARYx

Preorder  A  R\textbf{Preorder} \; A \; RPreorderAR

Includes  Y  A\textbf{Includes} \; Y \; AIncludesYA

x∈Yx \in Yx∈Y

Below  A  R  A  x\textbf{Below} \; A \; R \; A \; xBelowARAx


Notation

  1. Least  A  R  Y  x\textbf{Least} \; A \; R \; Y \; xLeastARYx can be abbreviated by Least  Y  x\textbf{Least} \; Y \; xLeastYx when AAA and RRR are clear from the context.

  2. Least  Y  x\textbf{Least} \; Y \; xLeastYx can be written x=min  Yx = \textbf{min} \; Yx=minY.


pred Least(A: set univ, R: univ->univ, Y: set univ, x: univ) {
  Preorder[A,R]
  Includes[Y,A]
  x in Y
  Below[A,R,A,x]
}
Least  A  R  Y:={  x:Least  A  R  Y  x  }\textbf{Least} \; A \; R \; Y := \{ \; x : \textbf{Least} \; A \; R \; Y \; x \; \}LeastARY:={x:LeastARYx}

Notation.

  1. Least  A  R  Y\textbf{Least} \; A \; R \; YLeastARY can be written Least  Y\textbf{Least} \; YLeastYwhen AAA and RRR are clear from the context.

  2. Least  Y\textbf{Least} \; YLeastY can be written min  Y\textbf{min} \; YminY.


fun Least(A: set univ, R: univ->univ, Y: set univ) : set univ {
  { x: Y | Least[A,R,Y,x] }
}

Meet (Infimum)

Meet  A  R  S  x\textbf{Meet} \; A \; R \; S \; xMeetARSx

Below  A  R  S  x\textbf{Below} \;A \; R \; S \; xBelowARSx

∀(y:Below  A  R  S  y:R.y.x)\forall(y : \textbf{Below} \;A \; R \; S \; y : R.y.x)∀(y:BelowARSy:R.y.x)


Notation.

  1. Meet  S  x\textbf{Meet} \; S \; xMeetSx abbreviates Meet  A  R  S  x\textbf{Meet} \; A \; R \; S \; xMeetARSx when AAA and RRR​ are clear from the context.

  2. Meet  S  x\textbf{Meet} \; S \; xMeetSx is abbreviated by x=⊓  Sx = \sqcap \; Sx=⊓S


pred Meet(A: set univ, R: univ->univ, S: set univ, x: univ) {
  Below[A,R,S,x]
  all y: univ | Below[A,R,S,y] implies y->x in R
}
Meet  A  R  S:={  x:Meet  A  R  S  x  }\textbf{Meet} \; A \; R \; S := \{ \; x : \textbf{Meet} \; A \; R \; S \; x \; \}MeetARS:={x:MeetARSx}

Notation.

  1. Meet  S\textbf{Meet} \; SMeetS abbreviates Meet  A  R  S\textbf{Meet} \; A \; R \; SMeetARS when AAA and RRR​ are clear from the context.

  2. Meet  S\textbf{Meet} \; SMeetS is abbreviated by ⊓  S\sqcap \; S⊓S


fun Meet(A: set univ, R: univ->univ, S: set univ) : set univ {
  { x : univ | Meet[A,R,S,x] }
}

Extended Meet

MeetExt  A  R  Z  Y  x\textbf{MeetExt} \; A \; R \; Z \; Y \; xMeetExtARZYx

Includes  Z  A\textbf{Includes} \; Z \; AIncludesZA

Includes  Y  Z\textbf{Includes} \; Y \; ZIncludesYZ

x∈Zx \in Zx∈Z

∀(z∈Z::Below  A  R  Y  z≡R.z.x)\forall(z \in Z :: \textbf{Below} \; A \; R \; Y \; z \equiv R.z.x)∀(z∈Z::BelowARYz≡R.z.x)


Notation.

  1. MeetExt  Z  Y  x\textbf{MeetExt} \; Z \; Y \; xMeetExtZYx abbreviates MeetExt  A  R  Z  Y  x\textbf{MeetExt} \; A \; R \; Z \; Y \; xMeetExtARZYx when AAA and RRR are clear from the context.

  2. MeetExt  Z  Y  x\textbf{MeetExt} \; Z \; Y \; xMeetExtZYx is denoted by x=⊓ZYx = \sqcap_Z Yx=⊓Z​Y.


pred MeetExt(A: set univ, R: univ->univ, Z,Y: set univ, x: univ) {
  Includes[Z,A]
  Includes[Y,Z]
  x in Z
  all z: Z | Below[A,R,Y,z] iff z->x in R
}
MeetExt  A  R  Z  Y:={  x:MeetExt  A  R  Z  Y  x  }\textbf{MeetExt} \; A \; R \; Z \; Y := \{\; x : \textbf{MeetExt} \; A \; R \; Z \; Y \; x\;\}MeetExtARZY:={x:MeetExtARZYx}

Notation.

  1. MeetExt  Z  Y\textbf{MeetExt} \; Z \; Y MeetExtZY abbreviates MeetExt  A  R  Z  Y\textbf{MeetExt} \; A \; R \; Z \; Y MeetExtARZY when AAA and RRR are clear from the context.

  2. MeetExt  Z  Y\textbf{MeetExt} \; Z \; Y MeetExtZYis denoted by ⊓ZY\sqcap_Z Y⊓Z​Y.


fun MeetExt(A: set univ, R: univ->univ, Z,Y: set univ) : set univ {
  { x: univ | MeetExt[A,R,Z,Y,x] }
}
PreviousDe Baets and Kerre Products of RelationsNextGalois Connection

Last updated 1 year ago

🧰