Defined to "improve" on the definitions of Bandler and Kohout
Relationβ βXβ βYβ βR\textbf{Relation} \; X \; Y \; RRelationXYR
Relationβ βYβ βZβ βS\textbf{Relation} \; Y \; Z \; SRelationYZS
Notation.
SubPrdβ βXβ βYβ βZβ βRβ βS\textbf{SubPrd} \; X \; Y \; Z \; R \; SSubPrdXYZRS can be written SubPrdβ βRβ βS\textbf{SubPrd} \; R \; SSubPrdRS when XXX, YYY and ZZZ are clear from the context.
SubPrdβ βRβ βS\textbf{SubPrd} \; R \; SSubPrdRS can be written in symbols as Rβ²SR \vartriangleleft SRβ²S.
fun SubPrd(X,Y,Z: set univ, R: X->Y, S: Y->Z) : X->Z { R.S & { x: X, z: Z | x.R in S.z } }
SupPrdβ βXβ βYβ βZβ βRβ βS\textbf{SupPrd} \; X \; Y \; Z \; R \; SSupPrdXYZRS can be written SupPrdβ βRβ βS\textbf{SupPrd} \; R \; SSupPrdRS when XXX, YYY and ZZZ are clear from the context.
SupPrdβ βRβ βS\textbf{SupPrd} \; R \; SSupPrdRS can be written in symbols as Rβ³SR \vartriangleright SRβ³S.
fun SupPrd(X,Y,Z: set univ, R: X->Y, S: Y->Z) : X->Z { R.S & { x: X, z: Z | S.z in x.R } }
SqrPrdβ βXβ βYβ βZβ βRβ βS\textbf{SqrPrd} \; X \; Y \; Z \; R \; SSqrPrdXYZRS can be written SqrPrdβ βRβ βS\textbf{SqrPrd} \; R \; SSqrPrdRS when XXX, YYY and ZZZ are clear from the context.
SqrPrdβ βRβ βS\textbf{SqrPrd} \; R \; SSqrPrdRS can be written in symbols as RβSR \diamond SRβS.
fun SqrPrd(X,Y,Z: set univ, R: X->Y, S: Y->Z) : X->Z { R.S & { x: X, z: Z | x.R = S.z } }
Last updated 1 year ago