Compendium of Predicates
  • 🌐Orientation
    • ⭐Welcome
    • ✒️Notation
    • 😅An Example
  • 🧰Definitions
    • Relation Taxonomy
    • Order Taxonomy
    • Algebra
      • Magma
      • Semigroup
      • Monoid
      • Group
      • Ringoid
      • Semiring
      • Ring
      • Unit Ring
      • Boolean Ring
      • Boolean Group
    • Bandler and Kohout Products of Relations
    • Closed
    • Complement
    • De Baets and Kerre Products of Relations
    • Extremal Elements
    • Galois Connection
    • Images of a set under a relation
    • Indexed Union and Intersection
    • Monoidal Preorder
    • Monotone Map
    • Natural Projection
    • Non-Preservation of Extrema
    • Over and Under
    • Power Set
    • Preorder
    • Preservation of Extrema
    • Product
    • Relation Inclusion
    • Row Constant Relations
    • Semilattice
    • Set Inclusion
    • Symmetric Monoidal Preorder
    • Upper Set
  • 🔬Checks
    • 🎙️A few words about the checks
    • Indirect Equality and Inclusion
    • Below
    • Extremal Elements
    • Relation Division
    • Algebra
      • Ring
      • Boolean Ring
      • Boolean Group
Powered by GitBook
On this page
  • Sub Product
  • Super Product
  • Square Product
  1. Definitions

De Baets and Kerre Products of Relations

Defined to "improve" on the definitions of Bandler and Kohout

PreviousComplementNextExtremal Elements

Last updated 1 year ago

Sub Product

SubPrd  X  Y  Z  R  S:=R∘S∩{  x,z:xR⊆Sz  }\textbf{SubPrd} \; X \; Y \; Z \;R \; S := R \circ S \cap \{ \; x,z : xR \subseteq Sz \; \}SubPrdXYZRS:=R∘S∩{x,z:xR⊆Sz}

Relation  X  Y  R\textbf{Relation} \; X \; Y \; RRelationXYR

Relation  Y  Z  S\textbf{Relation} \; Y \; Z \; SRelationYZS


Notation.

  1. SubPrd  X  Y  Z  R  S\textbf{SubPrd} \; X \; Y \; Z \; R \; SSubPrdXYZRS can be written SubPrd  R  S\textbf{SubPrd} \; R \; SSubPrdRS when XXX, YYY and ZZZ are clear from the context.

  2. SubPrd  R  S\textbf{SubPrd} \; R \; SSubPrdRS can be written in symbols as R⊲SR \vartriangleleft SR⊲S.


fun SubPrd(X,Y,Z: set univ, R: X->Y, S: Y->Z) : X->Z {
  R.S & { x: X, z: Z | x.R in S.z }
}

Super Product

SupPrd  X  Y  Z  R  S:=R∘S∩{  x,z:xR⊇Sz  }\textbf{SupPrd} \; X \; Y \; Z \; R \; S := R \circ S \cap \{ \; x,z : xR \supseteq Sz \; \}SupPrdXYZRS:=R∘S∩{x,z:xR⊇Sz}

Relation  X  Y  R\textbf{Relation} \; X \; Y \; RRelationXYR

Relation  Y  Z  S\textbf{Relation} \; Y \; Z \; SRelationYZS


Notation.

  1. SupPrd  X  Y  Z  R  S\textbf{SupPrd} \; X \; Y \; Z \; R \; SSupPrdXYZRS can be written SupPrd  R  S\textbf{SupPrd} \; R \; SSupPrdRS when XXX, YYY and ZZZ are clear from the context.

  2. SupPrd  R  S\textbf{SupPrd} \; R \; SSupPrdRS can be written in symbols as R⊳SR \vartriangleright SR⊳S.


fun SupPrd(X,Y,Z: set univ, R: X->Y, S: Y->Z) : X->Z {
  R.S & { x: X, z: Z | S.z in x.R }
}

Square Product

SqrPrd  X  Y  Z  R  S:=R∘S∩{  x,z:xR=Sz  }\textbf{SqrPrd} \; X \; Y \; Z \; R \; S := R \circ S \cap \{ \; x,z : xR = Sz \; \}SqrPrdXYZRS:=R∘S∩{x,z:xR=Sz}

Relation  X  Y  R\textbf{Relation} \; X \; Y \; RRelationXYR

Relation  Y  Z  S\textbf{Relation} \; Y \; Z \; SRelationYZS


Notation.

  1. SqrPrd  X  Y  Z  R  S\textbf{SqrPrd} \; X \; Y \; Z \; R \; SSqrPrdXYZRS can be written SqrPrd  R  S\textbf{SqrPrd} \; R \; SSqrPrdRS when XXX, YYY and ZZZ are clear from the context.

  2. SqrPrd  R  S\textbf{SqrPrd} \; R \; SSqrPrdRS can be written in symbols as R⋄SR \diamond SR⋄S.


fun SqrPrd(X,Y,Z: set univ, R: X->Y, S: Y->Z) : X->Z {
  R.S & { x: X, z: Z | x.R = S.z }
}
🧰